
Synchronous, In-Context Peer Support for Rovercode
Brady Hurlburt

Georgia Institute of Technology
Atlanta, Georgia

brady.hurlburt@gatech.edu

Bryce Montano
Georgia Institute of Technology

Atlanta, Georgia
hellobryce@gatech.edu

ABSTRACT
UPDATED—December 10, 2018. Asynchronous support plat-
forms like help forums are common in the field of software
engineering, but are they the most effective tool for facilitating
peer support among students who are learning to code? This
paper proposes an online peer-support system that connects
students through synchronous communication with rich prob-
lem context. First, the peer-support practices of existing sites
like Scratch and Glitch are examined through the lens of con-
structionism and social learning theory. Then, these lessons
are applied to the design of a peer-support platform for the
open-source classroom robotics platform, Rovercode.

ACM Classification Keywords
K.3.1. Computers and Education : Computer Uses in Educa-
tion

Author Keywords
online peer learning; social learning; constructionism;
Scratch; Glitch

INTRODUCTION
Asynchronous support platforms like Stack Overflow are
prominent in the field of software development. On these
platforms, users post a carefully posed question, then wait for
responses that could come at any time. Because these forums
strive to be encyclopedic, posters are often encouraged to re-
move as much context from their question as possible, leaving
the most generally applicable form of their problem [20].

In stark contrast to these forums, real-time support systems aim
to show that learning can flourish with ephemeral, synchronous
interactions between peer learners. These platforms facilitate
peer support that is synchronous and tightly tethered to the
context of the learner’s problem. Are platforms like these
promising for student coding environments? Are they scalable
in online communities? Do they encourage students to cheat?
Are they safe for children?

This paper answers these questions and provides a justification
for such platforms based on constructionism and social learn-
ing theory Examples from existing sites like Scratch and Glitch

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
authors must be honored. Abstracting with credit is permitted. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior specific
permission. Request permissions from the authors.
Copyright © 2018 Brady Hurlburt and Bryce Montano

are used to show that these support platforms encourage the
quick proliferation of knowledge through their communities
and create socially gratifying experiences for students. Finally,
the lessons from this investigation are applied to the design of
a peer-support platform for the open-source classroom robotics
platform Rovercode.

PREVIOUS WORK

Constructionism and Social Learning
In Papert’s constructionism, the people around the student
supply the models and metaphors to use as raw materials for
building understanding [14]. Bandura’s social learning theory
corroborates that idea: people can learn by observing and
interacting with those around them [19] and with the learning
artifacts created by those around them [9].

The sections below examine how these principals can be used
in peer-support systems.

Why Synchronous? Examining ReachOut and Glitch
Researchers Ribak, Jacovi, and Soroka built a real-time chat-
based support platform called ReachOut and studied its effi-
cacy [17]. They found that synchronous support sessions were
effective for quickly transferring understanding of the full con-
text of the question from the person requesting support to the
support provider, a process they call "negotiation of meaning."
Specific details about the context of the question are some-
times undesired in encyclopedic forums like Stack Overflow
[20], but context richness was embraced by ReachOut.

The ReachOut experiment questioned the oft-adopted motto
"Search before you ask." It found that even when institutional
knowledge was documented and searchable, chatting with
peers was often preferable because a peer could quickly sum-
marize information and help fit the information into one’s
existing understanding (a key activity in constructionism).
Furthermore, participants contributing to shared effort felt a
social gratification that asynchronous forums did not provide
[17].

The most prominent modern implementation of ReachOut’s
ideas is an online platform called Glitch [8]. Glitch is an
online community and toolchain for creating and deploying
web applications. They offer a "raise your hand" feature which
allows users to request help directly from the code editor (refer
to Figure 1). The support request is displayed to other users
on the Glitch home page. If someone volunteers to help, she
is connected to a live collaborative editing session with the
support requester. In the session, the support provider can
add and edit code and leave explanatory comments. When the



Figure 1: Glitch’s "raise your hand" feature [8].

question is resolved, the requester ends the session and has an
opportunity to send a “Thanks!” message to the provider.

Why In-Context? Examining Scratch
Social learning theory calls for students to interact with arti-
facts of each others’ work, and MIT’s Scratch platform is a
prominent example of an online community that facilitates
this. Scratch is a children’s programming and community
platform created by the MIT Media Lab’s Lifelong Kinder-
garten group [16]. Scratch hosts millions of users who create
content through graphical coding. Users can share their work
publicly and allow others to “remix” (i.e. to clone and edit
their work). Remixing places users in direct contact with
each others’ work products, which is critically different than
interacting with an isolated question on a forum. Remixing
allows skills and knowledge to spread quickly [7], and has
been proven on Scratch and other platforms to increase the
quality of the community’s creative output as a whole [13] [2].

What About Cheating?

Collaboration or Plagiarism?
If a student’s behavior in a peer-support activity resembles
copying, is the student learning? To answer this question, it
is important to keep in mind that the goals of a peer-learning
activity may differ from those of a traditional learning activity.
A copying behavior that would land squarely within the defi-
nition of plagiarism in a language-arts classroom may be pre-
cisely the adaption-by-observation sought in a peer-learning
activity [4]. Learning must be assessed after peer-support ac-
tivities, but the assessment must look beyond isolated achieve-
ment and include self-assessment, peer-assessment, assess-
ment of process, and negotiated assessment [3].

Learning or Freeloading?
If a student’s behavior in a peer-support activity makes it ap-
pear that she simply wants someone else to do their work for
her, is the student learning? And can the peer-support com-
munity handle the burden of those questions? This question
was brought to the popular consciousness of the computer
programming field by a weblog post by Joel Spolsky of Stack
Overflow [20].

Studies in the Scratch community have shown that the free-
loading attitude can be prevented. Researcher Champika Fer-
nando showed that placing members in roles focused on men-
torship and teaching can help shift their focus from question-
asking to learning [6].

Is it Safe?

A Focus on Sharing Work Products Reduces Abuse
Many peer-support systems take place online, where is critical
to guard the safety and privacy of children who participate.
However, misapplied moderation strategies can be detrimental
to the community. Constraints to narrow the expressiveness of
communication are easily circumvented [15]. Off-loading the
entire task of conflict resolution to adults leaves students help-
less to navigate even the slightest tension with their peers [18].
Down-votes on contributions by new members risk pushing the
member away while they are still learning community norms
[12], and worse yet, early down-votes counter-intuitively en-
courage a user to post more low-quality content [5].

The burden on moderation, however, is lighter in creator com-
munities like Scratch, which reports a relatively low rate of
abusive communication. This is likely because the interactions
in Scratch are not simply social, but rather have a purpose –
to share work products [7]. The moderation that is needed is
helped by defining peer roles, which can help moderators set
expectations for participants in an interaction [6].

A Politeness Framework
Beyond ensuring student safety, how can appropriate commu-
nication be defined? Can politeness be codified, and even if it
can, is it important in online interactions? Researchers Lewis
and Paola drew from Brown and Levinson’s classic linguistic
work Politeness: Some Universals in Language Usage when
designing the language a chat-based intelligent tutoring sys-
tem would use [10]. In Brown and Levinson’s framework,
people across all cultures have a positive and negative "face."
The positive face desires to be attractive to others; the negative
face desires autonomy. In this framework, politeness is re-
dressing these desires in one’s audience and avoiding actions
that threaten them. Tutoring inherently involves corrective and
instructive statements, which naturally threaten the negative
and positive faces, respectively; however, Lewis and Paola
were able to draw from strategies suggested by Brown and
Levinson to minimize the sharpness of face threats in ther
intelligent chat tutor. They assert that politeness is essential
for maintaining student motivation.

Lessons from Other Fields
The practices of effective in-person tutors also offer some in-
sight into what makes an effective online peer-support session.
Some relevant traits of good tutors are that they listen carefully,
offer encouragement, and provide ample time after asking a
question (called “wait time”) for the student to think [11].

The field of technical editing can also lend its key principle: it
is critical to consider the experience level of the student [1].
Choosing to use vocabulary that is known only to those with
experience with a subject can be detrimental to learning.



Figure 2: Rovercode’s Mission Control workspace.

Figure 3: A Rover.

DESIGN OF A SUPPORT SYSTEM FOR ROVERCODE
The principals established above were used to design a syn-
chronous, in-context peer support platform within the Rover-
code online programming environment. This section gives
an overview of Rovercode, then describes and justifies the
features of the support platform.

What is Rovercode?
Rovercode is an open-source educational robotics program-
ming platform. It consists of two parts: a small, wheeled
robot (called a Rover, shown in Figure 3), and a cloud-based
coding environment (accessible at https://rovercode.com). Stu-
dents create block-based programs using the online coding
environment called Mission Control, shown in Figure 2. The
programs execute in the browser, sending motor commands to
the rover and reading sensor data from the rover.

Rovercode was chosen to house the peer-support platform
for two reasons. First, it is developed by an open-source
community, which makes it easily extendible. Secondly, its
cloud-centered architecture facilitates interactions between
users well.

Support System Design
The Rovercode support system designed here allows a user
who is facing difficulty to create a support request using the

Figure 4: The support request form.

form shown in Figure 4. Once the support request has been
created, it becomes visible to the community of peers, who
can choose to volunteer their help. When a peer from the com-
munity initiates an action to provide support on the indicated
support request, the two students are joined in a chat session,
shown from each student’s perspective in Figure 5. Either
student may end the support session at any time, and the user
requesting support may choose to close the issue or leave it
open for another supporter to join.

The sections below describe and justify each of these steps in
more detail.

Connecting with a Support Provider
A student can request support using a form in Figure 4 within
the Mission Control interface. Like a question form on a
support forum, this form asks for a topic and an explanation.
However, the text entry boxes and intentionally small, suggest-
ing that the user need not capture every detail of the situation.

Once the support request is created, it becomes visible on the
homepage for other users. Another user can read the request
and volunteer to provide support.

The research above influenced the design of the form in several
ways, which are described below.



(a) The view of the user requesting support. (b) The view of the user providing support.

Figure 5: The views of the users asking and providing support.

Making Purpose Explicit
Fields and Pantic suggested that Scratch has a relatively low
rate of abusive communication because interactions on that
platform have an established purpose [7]. To attach explicit
purpose to support requests, the form in Mission Control in-
cludes a drop-down menu to specify the purpose of the request,
selected from:

• My code isn’t doing what I think it should.

• I don’t know what to do next.

• I’m looking for fun ideas.

The selected purpose is visible to potential support providers
and helps set their expectation should they choose to volunteer.

Communicating User Experience Level
In the form, users can also select their experience level with
Rovercode, one of:

• This is my first time on Rovercode

• I’m pretty new to Rovercode

• I’ve used Rovercode for a while

• I’m a Rovercode expert

The experience level is visible to potential support providers
and allows them to tailor their language as suggested by Amare
[1].

Futhermore, prompting a student to recognize her increasing
expertise may encourage her to view her role as a mentor and
teacher as well as a user, even if that role is not officially
assigned. This should create some of the positive effects of
roles observed by Fernando in Scratch [6].



Synchronous Communication in Mission Control
Live View of Code: Interacting with Work Products
When two students are connected, they are not connected in
some separate support environment where only the question
details are visible. Instead, the two users are connected inside
the requesting user’s Mission Control view – within the context
of the problem. While the users are chatting, the requesting
user’s code blocks are visible to both users, and changes made
by the requesting user are seen in real time by the support
provider.

This in-context interaction satisfies the principle of social
learning theory that students should interact not only with
each others’ knowledge, but with the products of each others’
work. The rich context immerses both students in details and
nuances that would be absent from an isolated forum post. The
support provider may learn something from a coding pattern
he observes in a section of the program that is unrelated to the
question at hand.

When connected, only the user requesting support can edit
the code; the supporter has a read-only view. The decision
not to make the code editable by both users is a compromise:
it slightly limits the ability of the supporter to freely interact
with the work product, but it encourages the owner of the code
to understand suggestions well enough to make the changes
herself.

Live Chat: Synchronous Meaning Making
Once connected by the chat interface, students are free to begin
discussing the code and the problem: what the user wants to
happen, what the user is seeing, and what the user was thinking
when she designed the code. Through this interface, users can
quickly clarify their ideas and follow directions that were not
imagined when the support request was originally posted. It is
this rapid, iterative group meaning-making that is the principal
benefit of synchronous communication for support. It eases
the burden of capturing all relevant information in the support
request, which is a primary challenge on forums.

Tip Cards for Encouraging Effective Support
Language and Strategy Coaching
To encourage users toward the best practices for tutoring and
politeness strategies discussed above, the strategies were dis-
tilled into tips that are displayed on cards through the the
interface.

1. Try to avoid the word “just”, as in “you just need to...”.
Something might be easy for you but a challenge for
a first-timer! This first tip is designed to ensure that
providers use language that considers their audience’s expe-
rience [1]:

2. Try asking “What do you want the Rover to do?” and
“What do you see the Rover doing?”. These questions
prompt the requestor to evaluate her own experience and the
provider to reinterpret that experience, which are important
steps in group meaning-making in informal learning [21]

3. Do your best to read what the other person wrote care-
fully. There’s no need to guess what they are thinking!
Careful listening is a key trait in effective tutors [11].

4. Try to be encouraging! Believe that they can do it! En-
couragement is a common trait in effective tutors [11] and
redresses the requestor’s positive face [10].

5. Try to be patient after asking a question! If you can,
give them some time to think. Alison asserts that suffi-
cient wait time after a question is important for encouraging
critical thinking [11].

6. Think about using the phrases “Now you might want
to...” and “What I would do is...”. Avoiding direct com-
mands redresses the requestor’s negative face [10].

7. Feel free to ask lots of questions! Socratic questioning is
another strategy for redressing the negative face [10].

8. You’re both in this together! Can you use the word “we”
sometimes? Establishing a joint goal is a strategy for po-
liteness [10].

9. Sometimes, try to help them think from the Rover’s per-
spective. Like, “the Rover didn’t know you wanted it
to...”. This tip encourages the conventional indirectness
strategy for politeness [10].

The tips follow the practice of other online social networks by
using “they” as the singular third-person pronoun. It is also
worth noting that the guidelines contained in these tips were
applied to the phrasing of the tips themselves. For example,
the sixth tip reads as a suggestion and not a command.

Moderation and Safety
The design decisions already described serve to tightly couple
communications with context and purpose, which has shown
to be effective in reducing rates of abusive messages. How-
ever, it is still important to provide students with means to
block new messages from users who behave inappropriately.
The Rovercode support interface provides the “Report Abuse”
button, which ends the chat session, logs the chat transcript
for moderators, and blocks those users from connecting on
any future support sessions. It also directs the users to the
Rovercode code of conduct, which describes how moderators
will evaluate and respond to the report.

In addition to the reporting feature, there is a message dis-
played at the beginning of each support session reminding
both parties never to share their real names or any other per-
sonally identifying information.

EVALUATION
The interface was evaluated by a a middle-school science
teacher, a Rovercode contributor, a high-school senior and
high-school freshman. In each trial, the evaluator took the
role of requesting and providing support in turn. Most of the
evaluators noted the tip cards, and several used the recom-
mendations to help guide their tutoring. All of the evaluators
requested practical changes, like simplifying the notification
that the other user is editing the code or moving the chat box
to a more convenient location. One of the high-school students
asked for the ability to place markers in the code workspace
to signal to the other user.



When asked if they imagined themselves using the support
request feature regularly, all of the evaluators said yes. When
asked if the imagined themselves providing support regularly,
all of the evaluators said that they would, but most on the
condition that a reward system is added.

FUTURE WORK

Incentives to Provide Support
As described earlier, social gratification provides non-
negligible motivation to provide support on synchronous sup-
port platforms. Future research will investigate what extrinsic
motivators could provide even more motivation. Common
practices include badges and point systems that unlock fea-
tures, but these must be evaluated in practice to uncover any
negative side effects on the community.

The Rovercode platform is usable in classrooms even without
built-in extrinsic motivators, because teachers can motivate
using the existing reward structure in their classrooms.

A Moderator View
This design does not discuss a view for moderators to evaluate
and act on abuse reports. Further research will be needed to
create an interface that allows moderators to efficiently and
accurately process these reports.

Continued Evaluation
The support platform is currently in the alpha stage in the
Rovercode project. When it is deployed in the mainline Rover-
code application, continued evaluation will be needed to judge
the effectiveness and safeness of the student communications
on the platform.

CONCLUSION
This paper showed how constructionist and social learning
principles can be used alongside practical lessons from exist-
ing online communities to create a synchronous, in-context
peer-support platform. The design of such a platform was
demonstrated the Rovercode project. In that design, many
principles were leveraged in a way that would be impossi-
ble on an asynchronous, encyclopedic forum-based support
platforms.

REFERENCES
1. Nicole Amare, Barry Nowlin, and Jean Hollis Weber.

2011. Technical editing in the 21st century. Prentice Hall
Boston, MA.

2. Cecilia R. Aragon, Sarah S. Poon, Andrés
Monroy-Hernández, and Diana Aragon. 2009. A Tale of
Two Online Communities: Fostering Collaboration and
Creativity in Scientists and Children. In Proceedings of
the Seventh ACM Conference on Creativity and Cognition
(C&#38;C ’09). ACM, New York, NY, USA, 9–18. DOI:
http://dx.doi.org/10.1145/1640233.1640239

3. David Boud, Ruth Cohen, and Jane Sampson. 1999. Peer
Learning and Assessment. Assessment & Evaluation in
Higher Education 24, 4 (1999), 413–426. DOI:
http://dx.doi.org/10.1080/0260293990240405

4. Janet Carter. 1999. Collaboration or Plagiarism: What
Happens when Students Work Together. SIGCSE Bull. 31,
3 (June 1999), 52–55. DOI:
http://dx.doi.org/10.1145/384267.305848

5. Justin Cheng, Cristian Danescu-Niculescu-Mizil, and
Jure Leskovec. 2014. How community feedback shapes
user behavior. arXiv preprint arXiv:1405.1429 (2014).

6. Champika Fernando. 2014. Online Learning Webs:
Designing Support Structures for Online Communities.
(2014).

7. Deborah A. Fields, Katarina Pantic, and Yasmin B. Kafai.
2015. "I Have a Tutorial for This": The Language of
Online Peer Support in the Scratch Programming
Community. In Proceedings of the 14th International
Conference on Interaction Design and Children (IDC
’15). ACM, New York, NY, USA, 229–238. DOI:
http://dx.doi.org/10.1145/2771839.2771863

8. Glitch. 2018. (2018). https://glitch.com/

9. W Hoppitt and K. N. Laland. 2013. Social learning: An
introduction to mechanisms, methods, and models.
Princeton University Press (2013).
http://press.princeton.edu/chapters/s10047.pdf

10. W Lewis Johnson and Paola Rizzo. 2004. Politeness in
tutoring dialogs: “Run the factory, that’s what I’d do”. In
International Conference on Intelligent Tutoring Systems.
Springer, 67–76.

11. Alison King. 1997. ASK to THINK-TEL WHY: A model
of transactive peer tutoring for scaffolding higher level
complex learning. Educational psychologist 32, 4 (1997),
221–235.

12. Cliff Lampe and Erik Johnston. 2005. Follow the (Slash)
Dot: Effects of Feedback on New Members in an Online
Community. In Proceedings of the 2005 International
ACM SIGGROUP Conference on Supporting Group Work
(GROUP ’05). ACM, New York, NY, USA, 11–20. DOI:
http://dx.doi.org/10.1145/1099203.1099206

13. Lora Oehlberg, Wesley Willett, and Wendy E. Mackay.
2015. Patterns of Physical Design Remixing in Online
Maker Communities. In Proceedings of the 33rd Annual
ACM Conference on Human Factors in Computing
Systems (CHI ’15). ACM, New York, NY, USA, 639–648.
DOI:http://dx.doi.org/10.1145/2702123.2702175

14. Seymour Papert. 1980. Mindstorms: Children,
Computers, and Powerful Ideas. Basic Books, Inc., New
York, NY, USA.

15. Stephanie M. Reich, Rebecca W. Black, and Ksenia
Korobkova. CONNECTIONS AND COMMUNITIES IN
VIRTUAL WORLDS DESIGNED FOR CHILDREN.
Journal of Community Psychology 42, 3 (????), 255–267.
DOI:http://dx.doi.org/10.1002/jcop.21608

16. Mitchel Resnick, John Maloney, Andrés
Monroy-Hernández, Natalie Rusk, Evelyn Eastmond,
Karen Brennan, Amon Millner, Eric Rosenbaum, Jay

http://dx.doi.org/10.1145/1640233.1640239
http://dx.doi.org/10.1080/0260293990240405
http://dx.doi.org/10.1145/384267.305848
http://dx.doi.org/10.1145/2771839.2771863
https://glitch.com/
http://press.princeton.edu/chapters/s10047.pdf
http://dx.doi.org/10.1145/1099203.1099206
http://dx.doi.org/10.1145/2702123.2702175
http://dx.doi.org/10.1002/jcop.21608


Silver, Brian Silverman, and Yasmin Kafai. 2009. Scratch:
Programming for All. Commun. ACM 52, 11 (Nov. 2009),
60–67. DOI:http://dx.doi.org/10.1145/1592761.1592779

17. Amnon Ribak, Michal Jacovi, and Vladimir Soroka. 2002.
"Ask Before You Search": Peer Support and Community
Building with Reachout. In Proceedings of the 2002 ACM
Conference on Computer Supported Cooperative Work
(CSCW ’02). ACM, New York, NY, USA, 126–135. DOI:
http://dx.doi.org/10.1145/587078.587097

18. Petr Slovak, Katie Salen, Stephanie Ta, and Geraldine
Fitzpatrick. 2018. Mediating Conflicts in Minecraft:
Empowering Learning in Online Multiplayer Games. In
Proceedings of the 2018 CHI Conference on Human
Factors in Computing Systems (CHI ’18). ACM, New
York, NY, USA, Article 595, 13 pages. DOI:
http://dx.doi.org/10.1145/3173574.3174169

19. M. Smith and Z. L. Berge. 2009. Social learning in
Second Life. Journal of Online Learning and Teaching 5,
2 (2009), 439.

20. Joel Spolsky. 2011. The Wikipedia of Long-Tail
Programming Questions. (5 1 2011).
https://goo.gl/ZSuYEd

21. Mary F. Ziegler, Trena Paulus, and Marianne Woodside.
2014. Understanding Informal Group Learning in Online
Communities Through Discourse Analysis. Adult
Education Quarterly 64, 1 (2014), 60–78. DOI:
http://dx.doi.org/10.1177/0741713613509682

http://dx.doi.org/10.1145/1592761.1592779
http://dx.doi.org/10.1145/587078.587097
http://dx.doi.org/10.1145/3173574.3174169
https://goo.gl/ZSuYEd
http://dx.doi.org/10.1177/0741713613509682

	Introduction
	Previous Work
	Constructionism and Social Learning
	Why Synchronous? Examining ReachOut and Glitch
	Why In-Context? Examining Scratch
	What About Cheating?
	Is it Safe?
	A Focus on Sharing Work Products Reduces Abuse
	A Politeness Framework

	Lessons from Other Fields

	Design of a Support System for Rovercode
	What is Rovercode?
	Support System Design
	Connecting with a Support Provider
	Making Purpose Explicit
	Communicating User Experience Level

	Synchronous Communication in Mission Control
	Live View of Code: Interacting with Work Products
	Live Chat: Synchronous Meaning Making

	Tip Cards for Encouraging Effective Support
	Language and Strategy Coaching

	Moderation and Safety

	Evaluation
	Future Work
	Incentives to Provide Support
	A Moderator View
	Continued Evaluation

	Conclusion
	REFERENCES 

